Obróbka cieplna silnie odkształconego stopu AlSi10Mg wytworzonego techniką selektywnego stapiania w łożu proszkowym (SLM)

P Snopiński^{1*}

¹ Department of Engineering Materials and Biomaterials, Silesian University of Technology, Gliwice, Poland

Mikrostruktura stopu AlSi10Mg (ODLEW)

Struktura dendrytyczna stopu AlSi10Mg w stanie odlanym

Proces stapiania w łożu proszkowym (LPBF)

Mikrostruktura stopu AlSi10Mg (LPBF)

Mikrostruktura stopu AlSi10Mg

Właściwości mechaniczne stopu AlSi10Mg

Processing methods	Direction	Temperature	Tensile strength (MPa)	Elongation (%)
Casting	XY		e Tensile strength (MPa) Elongation 312.65 ± 1.34 12.60 ± 0.77 315.13 ± 1.33 14.29 ± 0.19 445.34 ± 11.36 8.68 ± 0.02 430.04 ± 8.88 8.70 ± 0.82	12.60 ± 0.77
Casting	YZ	25 °C	315.13 ± 1.33	14.29 ± 0.19
SIM	XY	445.34 ± 11.36 8.68 ± 0.02 430.04 ± 8.88 8.70 ± 0.82	8.68 ± 0.02	
SLIVI	ΥZ		8.70±0.82	
Casting	XY		237.16 ± 6.13	20.47 ± 1.70
Casting	YZ	220 %C	237.16 ± 6.13 20.47 ± 1.70 225.31 ± 5.46 18.67 ± 0.49	18.67 ± 0.49
SLM	XY	230 °C	266.59 ± 15.25	20.53 ± 1.55
	YZ		270.19 ± 15.86	21.73 ± 1.80

Table 2. Tensile results of as-cast and SLM AlSi10Mg.

¹Qian Yan, Bo Song, Yusheng Shi, Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting, Journal of Materials Science & Technology, Volume 41, 2020.

Morfologię eutektyki Al/Si zmodyfikować można stosując krótkotrwałe niskotemperaturowe wyżarzanie. a) stan wyjściowy, b) i c) obrobiony cieplnie 320 °C 9 min

() of Technology

Intensywne odkształcenie plastyczne – LPBF AlSi10Mg

Intensywne odkształcenie plastyczne – LPBF AlSi10Mg

Intensywne odkształcenie plastyczne – LPBF AlSi10Mg

STABILNOŚĆ TERMICZNA MIKROSTRUKTURY STOPU ALSI10MG PO PROCESIE ŚRUTOWANIA (SHOT PEENING)

- Jest to proces obróbki plastycznej na zimno,
- Cel wytworzenie naprężeń ściskających,
- Zastosowanie poprawa wytrzymałości zmęczeniowej komponentów z druku 3D,

Nozzle

٠

Silesian University of Technology

www.polsi.pl

~ 12 µm

www.pols.ol

200 nm

Al

www.polsi.pl

INŻYNIERIA GRANIC MIĘDZYKRYSTALICZNYCH (IGM) W STOPIE ALSI10MG / STABILNOŚĆ TERMICZNA MIKROSTRUKTURY PO PROCESIE KOBO

Granice specjalne – AlSi10Mg LPBF

minimalizacji energii. Powstawanie granic CSL jest energetycznie korzystne – mogą tworzyć się spontanicznie.

Wykorzystanie naprężeń resztkowych do aktywacji IGM

. .

Wyniki analizy mikrostruktury stopu AlSi10Mg wykonanej techniką dyfrakcji linii Kikuchiego w trybie transmisyjnym

www.polsi.pl

Porównanie własności mechanicznych

Stabilność termiczna mikrostruktury po procesie KOBO

Dziękuję za uwagę

Badania finansowane przez Narodowe Centrum Nauki w ramach projektów:

- SONATA 17 2021/43/D/ST8/01946
 - OPUS 27 2024/53/B/ST8/03574

