Willkommen Welcome Bienvenue

Empa The Place where Innovation Starts

Bridging fundamental science with application, and universities with industry

Bridging fundamental science with application, and universities with industry

J. Janczak-Rusch/Exploring nanomultilayers for joining technology applications/3

Bridging fundamental science with application, and universities with industry

J. Janczak-Rusch/Exploring nanomultilayers for joining technology applications/4

Exploring nanomultilayers for joining technology applications

and > 15 years of collaboration with WUT

Jolanta Janczak-Rusch

Empa, Swiss Federal Laboratories for Materials Science and Technology, Joining Technologies & Corrosion, 8600 Dübendorf, Switzerland

Content:

our journey through the exploration of nanomultilayers

- **Case Study 1**: Development of **AI-Si** brazing filler based nanomultilayers (NMLs)
 - How to overcome the technological limits by brazing of Al heat exchangers?
- Case Study 2: Ag-Cu brazing filler/AIN barrier NMLs
 - Melting, phase separation, melting behavior, control of the mass transport
- Case Study 3: Ag/AIN nanomultilayers
 - Anomalous fast diffusion under oxygen atmosphere
- **Case study 4**: **Cu/W** nanomultilayers
 - *Brazing and in-situ formation of nanocomposites*

Case study 1: AlSi/AlN nanomultilayers

Courtesy: MAHLE Behr GmbH & Co., Stuttgart Source: www.innovaltec.com/brazedaluminium-heat-exchangers/

Brazing of AI heat exchangers

Industrial request (2003-2008)

How to overcome the technological limits by brazing AI heat exchangers?

Brazing of Al-alloys with AlSi filler metal alloys is limited by the relatively high brazing temperature

 AlSi brazing filler alloys (T_b > 577°C) are general purpose fillers

- Small ∆T between core and filler metal → challenging process control, heat effects on the base metal
- Limited number of suitable core metals for brazing
 - Brazeability of high strength alloys? Innovation?
 - Solidus temperature of some high strength alloys as low as 485°C
- Need of energy- and cost-saving, environmentally friendly processes

Melting Point Depression (MPD) in nanoparticles and thin films

✓ It is well-known that the melting point of nanostructures decreases with decreasing size in the nano-scale regime (i.e. <20 nm)

- Large surface to volume ratio of nanometals alters thermodynamic and thermal properties
- ✓ MPD in order of tens to hundreds of degrees can be achieved for metals with nanodimensions.

Can we reduce the brazing temperature by using a nanostructured brazing filler metal (alloy) ?

Nanolayered AlSi12 brazing filler (AlSi/AlN NML): methods

NMLs deposition

Magnetron sputtering

alternated deposition of AISi and AIN layers reactive sputtering of AIN

Determination of the melting point

- HT XRD investigation: in-situ measurements (PANalytical X'Pert PROMP Diffractometer, HT Chamber), T>300°C, steps of 20°C using CuKα radiation
 Criteria: dissaperence of the strongest crystalline peaks of the brazing filler phases (e.g. 111 or 200)
 - Melting experiments: annealing (T=300 ... 600°C, hold time: 5min, hetaing rate: 5K/min, Ar 6.0) followed by SEM investigations and thickness measurements
 Criteria: appearance of braze droplets at the specimen Braze droplet surface, change in multilayer thickness
- Correlation of the results of both investigations

Melting of nanolayered AlSi12 brazing filler (AlSi/AlN NML)

Ultra-thin Al-Si_{12at.%} films confined between AlN layers exhibit size-dependent MPD and allows brazing at reduced temperatures!

J. Janczak-Rusch/Exploring nanomultilayers for joining technology applications/14

BEHR

Lessons learned from the case study 1

- NMLs offer great opportunities (not only for joining applications)
- AI-Si/AIN: a significant MPD can be achieved for nano AI-Si brazing filler
 - It scales with the filler thickness
- The relationships are very complex: many interplaying parameters (meaning also huge design opportunities)
 - Significant effect of the diffusion barrier material observed

<u>Main practical question</u> related to joining with NMLs: how to intensify the outflow of the braze material to the NML surface?

Case study 2: Ag-Cu/AIN nanomultilayers

Collaboration with INMAT WUT and IMIM PAN PhD Thesis Vinzenz Bissig Empa/WUT

J. Janczak-Rusch/Exploring nanomultilayers for joining technology applications/18

Ref: J Mater Chem C 4 (2016), 4927

Fundamental study on Ag-Cu/AIN nanomultilayers

Materials

- Silver-based braze alloy have wide range of brazing applications (relatively low T_b)
- Silver-copper eutectic alloy Ag-28Cu (wt.%) is a "key" brazing alloy (representative of virtually every other braze/solder filler alloy).

Name	Analysis (wt%)	Melting point °C	EN 1044	DIN
Eutectic	Ag-28Cu	778	AG 401	L-Ag 72

- Representative equilibrium phase diagram: a simple eutectic system with partial solid solubility in the terminal phases
- Two-phase structure with silver and copper rich lamella
- The solubility of copper in a silver rich phase and vice versa is negligible at room temperature

Deposition of Ag-Cu_{40at.%} /AIN NMLs

- Ag-40at.% Cu target, applied power: 25 W
- AlN: reactive sputtering of Al in Ar/N₂(g), 0.3 Pa
- Substrate: α -Al₂O₃(0001)
- Single layer thickness: 4-15 nm
- Number of repetitions: 1, 10, 20

J. Janczak-Rusch/Exploring nanomultilayers for joining technology applications/19

As-deposited Ag-Cu_{40at.%}/AIN NML

Morphology by HRSEM

NML cross-section (Ag-Cu: light grey) SEM micrographs of (**a**) a cross section and (**b**) the surface of an as-deposited Ag-Cu_{40at%}/AIN NML, as produced by magnetron sputtering.

XRD pole figures for (a) the Ag(111) and (b) the AlN(0103) family of planes, as recorded from the AgCu_{8nm}|AlN_{10nm} NML in the as-deposited state. (c) Phi-scans of the α -Al₂0₃(2-1-13), Ag(111) and AlN(10-13) reflections.

- Alternating nanocrystalline Ag-Cu_{40at.%} and AlN layers are of uniform thickness
- Ag-Cu_{40at.%} layers consist of fcc matrix of Ag nano-grains supersaturated with Cu
- Strong in-plane and out-of-plane texture, due to the orientation relationship $Ag\{111\}<110>||AIN\{0001\}<1010>||AI_2O_3\{0001\}<1010>.$

AgCu/AlN after isothermal annealing (420° and 600°C/30')

NML cross section (TEM image)

TEM investigations: WUT, group of Prof. M.Lewandowska

J. Janczak-Rusch/Exploring nanomultilayers for joining technology applications/21

NML top surface (AIN as a top layer)

Massive "outflow" of Cu (only)

Melting point depression of confined Ag-Cu by HT-XRD:

J. Janczak-Rusch/Exploring nanomultilayers for joining technology applications/22

Melting behavior of nanoconfined Ag-Cu/AlN

Ref./Source: J. Janczak-Rusch, et.al, Phys. Chem. Chem. Phys., 2015, 17, 28228-28238

Findings (XRD, SEM, TEM, EDX)

Non-eutectic melting behavior of confined Ag-Cu alloy !

Melting Temperature of	Bulk materials	in NML (layer thickness: 10nm)
Ag-Cu (eutectic)	778°C	heterogeneous melting (420-810°C)
Cu	1084°C	420-560°C
Ag	961 °C	> 700°C

What is the reason for the observed behavior ? Why the phase with a higher melting point (Cu) melts first?

Phase separation in Ag-Cu_{40at.%}/AIN NML

TEM (bright field)/EDS mapping of Ag-Cu_{8nm}/AIN_{10nm} NML after prolonged annealing at $T > 250^{\circ}$ C

HT TEM AIN_{10nm}/AgCu_{16nm}/AIN_{4nm}, T=350°C, 0.4s

- Phase-separation with coarsening of Ag and Cu domains driven by large enthalpy of mixing and reduction of grain boundary energies
- Onset of phase separation becomes thermally activated at around 250 °C, but does not induce noticeable degradation of the NML structure
- It is a very fast process (~0.4 s); observed also for confined AI-Si alloys

J. Janczak-Rusch/Exploring nanomultilayers for joining technology applications/24

<u>Ref:</u> J Mater Chem C 4 (2016), 4927

Interface's structure in Ag-Cu/AIN (DFT and HR TEM)

The effect of the interface structure on solid-liquid transition

In particles embedded in a Al matrix (experimental study)

Effect of interface structure on melting of nano-confined metals <u>Ref:</u> Lu & Jin, Curr. Opin. Solid State Mater. Sci. 5 (2001) 39

Nanoparticles coated by or embedded in a high melting point matrix with incoherent interface, exhibit a melting point higher than that of the bulk counterpart (superheating)

J. Janczak-Rusch/Exploring nanomultilayers for joining technology applications/26

Confined AI thin films (molecular dynamics simulations)

Effect of interface structure on melting point of confined thin aluminium films <u>Ref:</u> T. Wejrzanowski, M. Lewandowska, K. Sikorski, K. J. Kurzydlowski, 2014. doi:10.1063/1.4899240.

The coherent intercrystalline interface suppress the transition of solid aluminum into liquid, while free-surface gives MPD. Al thin film of 4nm thickness confined between coherent interlayers shows a MP of 131 K by MD higher than defect free infinite crystal

The effect of the barrier layer thickness

Fracturing of AIN barrier layers

Sintering of AIN barrier layers

Ref: V. Araullo-Peters et. al. ACS Appl. Mater. Interfaces 116, 6605-6614

Directional mass transport in NMLs with ultra-thin barriers

Surface of thin AIN barrier (4 nm)

Ultra thin AIN nanolayers deposited by magnetron sputtering show open grain boundary structure. The open nano-channels promote the diffusion of confined metals (Cu and Ag) from the entire NML towards the surface.

J. Janczak-Rusch/Exploring nanomultilayers for joining technology applications/28

Ref: V. Araullo-Peters et. al. ACS Appl. Mater. Interfaces 116, 6605-6614

Metal outflow in Ag-Cu_{40at.%}/AIN NML with a thin barrier (4nm)

STEM micrographs and EDS elemental maps for the AgCu_{8nm}|AIN_{4nm} NML cross-sections after 5 mins of isothermal annealing at 500 °C

Confined voids, as created by mass transport of Cu and Ag, have been closed by the deformation and partially sintering of the remaining AIN barrier layers!

Lessons learned from the case study 2

- Nano-confined alloys of bulk eutectic composition can show non-eutectic melting (heterogeneous process).
 - Sputter deposited Ag-Cu/AIN NMLs undergo phase separation of Ag and Cu (a very fast process) nano/grains, as driven by large positive enthalpy of mixing.
- Melting point depression strongly depends on the structure of local interfaces and energetics.

•The Cu nano-grains form incoherent AIN interface with AIN, resulting in random in-plane texture and high melting point depression of ~ 500° C.

• The outflow of the confined material can be tuned

Phase transformations in AIN/Ag-Cu_{18nm}/AIN sandwich 200-400°C (in-situ TEM observations)

Ref: V. Araullo-Peters et. al. ACS Appl. Mater. Interfaces 116, 6605-6614

Does a nanoconfined "eutectic" alloy offer any advantages in terms of MPD?

Collaboration with WUT

The behavior of Ag/AIN nanomultilayers upon heating

J. Janczak-Rusch/Exploring nanomultilayers for joining technology applications/32

Ref: J Mater Chem C 4 (2016), 4927

In-situ tracing of the outflow of nanoconfined Ag during heating (XRD at the synchrotron)

In-situ XRD at the synchrotron during heating of Ag/AIN NMLs in air evidences very fast outflow of Ag to the surface at temperatures as low as 250 °C!

In-situ tracing of Ag outflow during heating

M. Chiodi et. al. Massive Ag migration through metal/ceramic nano-multilayers. J., Mat. Chem.C, 4[22]2016(4927-4938).

Ag migration is related to the stress-release in the NML

The effect of atmosphere on the Ag outflow and thermal stability of Ag/AIN NMLs

Effect of O₂(g) on thermal stability of Ag/AIN by ex-situ XPS

Empa Materials Science and Technology

Interaction of O with Ag enhances enthalpy of Ag vacancy formation and thereby the Ag atomic mobility!

J. Janczak-Rusch/Exploring nanomultilayers for joining technology applications/36

M. Chiodi et. al. Massive Ag migration through metal/ceramic nano-multilayers. J, Mat. Chem.C, 4[22]2016(4927-4938).

A new phenomena of nano-volcanic eruption of Ag orginating in Ag-O interactions

April 2016, Empa, WUT: massive, oxygen enhanced Ag migration in sputtered Ag/AIN NMLs (here: Ag_{5nm}/AIN_{10nm} after annealing at 420°C)

Chiodi, et. al., Massive Ag migration through metal/ceramic nano-multilayers: an interplay between temperature, stress-relaxation and oxygen-enhanced mass transport, J. Mater. Chem. C, 2016

https://www.freepik.com/premium-vector/volcano-eruption-with-lava_9433373.htm

Ag nano-volcanic eruption: abundant Ag hillock formation by several interactions between Ag and O, which can be exactly analogized to a volcanic eruption and the deposition of ash.

Oct. 2016, Osaka University and Cheng Kung University: abundant Ag hillock formation on sputtered Ag films at elevated temperatures (here: 1µm thick Ag thin films sputtered on Ti-coated Si wafers and annealed at 250°C/ 5 min)

Sk. Lin, S. Nagao, E. Yokoi, at al., Nano-Volcanic Eruption of Silver, Scientific Reports (6)2016

The phenomenon involves grain boundary liquation, the ejection of transient Ag-O fluids through grain boundaries, and the decomposition of Ag-O fluids into O₂ gas and suspended Ag and Ag₂O clusters.

Lessons learned from the case study 3 (Ag/AIN)

- Fast and extensive migration of nano-confined Ag at temperatures T > 250°C (well below bulk melting point of 962°C) can be evoked by oxygen.
- Migration of the nanoconfined metal is related to the stress-release in the NML

Application-oriented findings:

- New opportunities for the development of joining processes
 - Fast, low-temperature bonding processes with nano-confined brazing fillers are possible
 - no explicit need of melting of the brazing filler or using brazing filler alloys (higher MPD can be practically easier achieved for confined metals than for alloys)
 - use of air as brazing atmosphere can be a choice (low-cost processes)

Can we control the outflow of the confined metal for a localized bonding?

Case study 4: Cu/W nanomultilayer

How to make high-strength joints of refractory metals at T<750°C?

Industrial request (2014-2016) W_{25nm}+(Cu_{5nm}/W_{5nm})x100

Refs.: F. Moszner, et. al. , J. of Mat. Sci. Eng. B 6 (2016) 226-230 C. Cancellieri, et. al. J. Appl. Phys. 2016, 120, 195107 F. Moszner, et. al. Acta Materialia 2016, 107, 345-353

Cu/W nanomultilayer as a brazing filler

Requirements: high-strength joints at T < 750°C

Material System

- Cu alloys reinforced with W-particles offer attractive mechanical properties
- NML approach with to join at relative low temperatures and to form in-situ a high-strength composite (transformation of NML to particularbased composite)

J. Janczak-Rusch/Exploring nanomultilayers for joining technology applications/43

Phase diagram Cu – W W 5 nm 🚽 Magnetron-5 nm -Cu sputtering Cu - W two liquids $\approx 2 \ \mu m$ W Cu Melting point W- adhesion layer 25 nm of Cu Sapphire W_{25nm}+(Cu_{5nm}/W_{5nm})x100 - Characterization via SEM, XRD - Immiscible system - Isothermal treatments experiments - No solid state phase performed between 400-800°C/100 min (in transformations up to the melting point of Cu vacuum) - Isothermal in-situ HT-XRD (675-725°C) to - Large CTE mismatch study kinetic of the structural transformation Refs.: F. Moszner, et. al., J. of Mat. Sci. Eng. B 6 (2016) 226-230 C. Cancellieri, et. al. J. Appl. Phys. 2016, 120, 195107 F. Moszner, et. al. Acta Materialia 2016, 107, 345-353

Empa Materials Science and Technology

Methods

NML configuration

100 nm

Cu-matrix

100 nm

W-particles

C. Cancellieri, et. al. J. Appl. Phys. 2016, 120, 195107 F. Moszner, et. al. Acta Materialia 2016,107, 345-353

Thermal Stability of Cu/W (SEM investigations)

As deposited NML Transformation from NML to nanocomposite **First structural changes** 100 min at 500 °C 1) 700 °C Planar-view Planar-view 500 nm 2) voids 500 nm 500 nm 100 nm 100 nm 3) **Cross-section Cross-section** $3 \, \mu m$ 0 1 um NMLs (Cu, (Cu, /W,)x100 pinching 500 nm 100 nm 100 nm - Starting from 500°C a high - Increase in layer waviness with - T>650°C: Degradation of the NML (formation of voids number of lines with facetted Cu increasing number of repetitions at the surface and pinching of the layers) and formation - Semi-coherent interface between particles appear on the surface of a spheroidized Cu-W nano-composite Cu and W layers - No severe defects (crack, voids) NML degradation progresses is completed at 800°C J. Janczak-Rusch/Exploring nanomultilayers for joining technology applications/44 Refs.: F. Moszner, et. al., J. of Mat. Sci. Eng. B 6 (2016) 226-230

Structural evolution of Cu/W upon heating

J. Janczak-Rusch/Exploring nanomultilayers for joining technology applications/45

Refs.: F. Moszner, et. al. , J. of Mat. Sci. Eng. B 6 (2016) 226-230 C. Cancellieri, et. al. J. Appl. Phys. 2016, 120, 195107 F. Moszner, et. al. Acta Materialia, 2016, 107, 345-353

Effect of stress on GB diffusion in Cu/W NMLs

Empa Materials Science and Technology

High compressive stresses in the W barrier layer increase the effective activation energy for Cu diffusion in W GBs (by a factor of ~1.5) and considerably slow down the diffusion kinetics

Joining with Cu/W nanomultilayers: proof-of concept

In-situ formation of a nanocomposite in a joint during brazing process

High strength joints can be achieved with NMLs at reduced brazing temperatures

Lessons learned and outlook case study 4 (Cu/W)

- High strength nanocomposite can be in-situ formed during the bonding process when using NMLs of immiscible metallic systems such as Cu-W as a bonding material
- The temperature of the transformation process can be controlled by the imterfacial stress

Outlook:

- Engineering of NMLs of immiscible metals for joining application and thermal management
 - NMLs with desired functional properties
- Deeper understanding of the behaviour NMLs of immiscible metals
 - In-situ control of internal stresses during the NML deposition
 - Combing experiments with modelling

NMLs offer a great "engineering tool"

but the new phenomena and complex relationships between the design parameters need to be fully understood

ACKNOWLEDGEMENTS

Current Joining Team

- ✓ Dr. Lars Jeurgens
- Dr. Bastian Rheingans
- ✓ Tobias Burgdorf
- Dr. Hans-Rudolf Elsener
- Dr. Claudia Cancellieri

Former Team Members

Dr. Giancarlo Pigozzi

Dr. Sebastian Siol

Benjamin Lehmert

 \checkmark

 \checkmark

 \checkmark

- Ør. Vicente Araullo-Peters
- Dr. Vinzenz Bissig
- Dr. Mirco Chiodi
- Dr. Joanna Lipecka
- Dr. Frank Moszner

SWISS*PHOTONICS

International Collaborators

- ✓ Prof. Malgorzata Lewandowska, Warsaw University of Technology, Poland
- Prof. Natalia Sobczak, Prof. L. Zabdyr, Dr. Grzegorz Garzel, PAN, Poland
- Prof. Rafal Abdank-Kozubski, Jagiellonian University, Poland
- Prof. Matthias Türpe, Mahle GmbH, Germany
- Prof. George Kaptay, Bay Zoltan Nonprofit Ltd., Hungary
- ✓ Dr. Gunther Richter, MPI for Intelligent Systems, Germany
- Dr. Andrej Antušek, Slovak University of Technology
- Prof. Norman Zhou, University of Waterloo, Canada
- Prof. Akio Hirose, Osaka University, Japan
- Prof. Daniel Ariosa, Universidad de la República, Uruguay
- Dr. S. Yoon, University Stuttgart, Germany

J. Janczak-Rusch/Exploring nanomultilayers for joining technology applications/50

Thank you for your attention!

Follow-up study on Al-Si/AlN NMLs

- The description of underlying mechanisms and microstructural characteristics that govern the phase stability, diffusion and pre-melting behaviour of nano-confined AI and AI-Si alloys in a NML (Barrier: AIn)

 A significant contribution to the understanding of the melting point depression/superheating phenomena and of phase stability of nano-confined alloys

Schema of the microstructural changes of an Al-Si12%at.4nm/AlN3nm NML upon heating