

Politechnika Śląska

Structural and corrosion behavior characterization of bioresorbable Ca-Mg-Zn-Yb-B-Au alloys

Rafał Babilas

Gliwice, 30.06.2022

Ca-Mg-Zn alloys are expected as promising engineering materials. They can be used as resorbable materials in medicine.

The problem of Ca-Mg-Zn alloys is high rate of dissolution and low corrosoion resistance in aqueous solutions!

The **proposed methods** to reduce the **corrosion activity of calcium alloys Ca-Mg-Zn** is achieve of:

- the homogeneous amorphous structure,
- **modification of the chemical composition** by alloying additions such as **noble metals** (e.g. Au), **rare earth elements** (e.g. Yb) and **metalloids** (e.g. B).

Task: Limit of hydrogen evolution for Ca-based alloys in aqueous solutions

Fig. Changes of surface morphology and hydrogen evaluation of Ca₆₀Mg₁₅Zn₂₅ glassy plates versus immersion time in Ringer's solution at 37°C Song G., Atrens A., Adv. Eng. Mater. 5 (2004) 837

How to limit the corrosion activity of Ca-Mg-Zn alloys?

Au addition?

<u>Gold</u> is known as the most inert of metals with immunity to corrosion. Often used for dental items.

Materials Chemistry and Physics 226 (2019) 51-58

Effect of Au addition on the corrosion activity of Ca-Mg-Zn bulk metallic glasses in Ringer's solution

Rafał Babilas^{a,*}, Anna Bajorek^b, Patryk Włodarczyk^c, Wojciech Łoński^a, Dawid Szyba^a, Dorota Babilas^d

XRD results and volume of H₂ evolution in Ringer's <u>solution</u>

Fig. Hydrogen evolution volume as a function of time during tests in Ringer's solution at temperature of 37°C

~1 ml/cm² per hour - this amount is permitted for rats with a weight of 240 g (https://doi.org/10.1152/jappl.1962.17.2.268)

Electrochemical results in Ringer's solution

Fig. Changes of open circuit potential in a function of time (a) and polarisation curves (b) of Ca₄₇Mg₁₈Zn_{35-x}Au_x (x=0,1,3) alloy in Ringer's solution at temperature of 37°C

<u>XPS spectroscopy – survey spectra after electrochemical</u> <u>measurements</u>

Oxides Hydroxides Carbonates

Fig. XPS survey spectra for the surface of $Ca_{47}Mg_{18}Zn_{35}$, $Ca_{47}Mg_{18}Zn_{34}Au_1$ and $Ca_{47}Mg_{18}Zn_{32}Au_3$ after corrosion in Ringer's solution

Analysis of corrosion products after 7 h of immersion in Ringer's solution

Fig. XRD patterns after 7 h of immersion (a) and changes of surface morphology of samples (b) after tests in Ringer's solution at 37°C

What about Yb addition in Ca-Mg-Zn alloys?

Ytterbium is the REE element, which has unlimited solubility in calcium and has been found to be effective in improving corrosion resistance.

Journal of Non-Crystalline Solids 488 (2018) 69-78

Corrosion resistance of resorbable Ca-Mg-Zn-Yb metallic glasses in Ringer's solution

Rafał Babilas^{a,*}, Anna Bajorek^b, Piotr Sakiewicz^a, Aneta Kania^a, Dawid Szyba^a

XRD patterns and electrochemical tests

Fig. XRD patterns (a) changes of open circuit potential (b) and polarisation curves (c) for Ca₆₅Mg₁₀Zn₂₅, Ca₅₅Mg₂₀Zn₂₅ and Ca₃₂Mg₁₂Zn₃₈Yb₁₈ alloys in Ringer's solution at 37°C

UCZELNIA BADAWCZA

Hydrogen evolution in a function of time in Ringer's solution

Fig. Hydrogen evolution volume in a function of time in Ringer's solution at 37°C

XPS spectroscopy – survey and core level spectra

Rys. XPS survey and core level spectra of C1s, O1s, Ca2p, Mg2p, Zn2p and Yb4d for Ca₆₅Mg₁₀Zn₂₅, Ca₅₅Mg₂₀Zn₂₅ and Ca₃₂Mg₁₂Zn₃₈Yb₁₈ alloys after corrosion tests in Ringer's solution at 37°C

Corrosion products analysis after 5 h of immersion in Ringer's solution

Fig. XRD patterns after 5 h of immersion (a) and changes of surface morphology of samples (b) after tests in Ringer's solution

Boron addition?

Boron is a biocompatible element with a positive effect on the growth of bones and is required for the maintenance of human health.

Journal of Alloys and Compounds 815 (2020) 152313

Structural and electrochemical study of resorbable $Ca_{32}Mg_{12}Zn_{38}Yb_{18-}$ _xB_x (x=1, 2, 3) metallic glasses in Ringer's solution

Dawid Szyba^a, Anna Bajorek^b, Rafał Babilas^{a,*}

Check for updates

Forum Inżynierii Materiałowej

XRD patterns and HRTEM images

CaZn2 (420) CaZn2 (035

Fig. XRD patterns, HRTEM micrographs and SAED patterns of $Ca_{32}Mg_{12}Zn_{38}Yb_{18-x}B_x$ (x=1,2,3 at.%) samples in as-cast state

Electrochemical measurements in Ringer's solution

Fig. Changes of open circuit potential (a) and polarisation curves (b) of $Ca_{32}Mg_{12}Zn_{38}Yb_{18-x}B_x$ (x=1,2,3 at.%) alloys in Ringer's solution at temperature of 37°C

Hydrogen volume after 30 days of immersion in Ringer's solution

Fig. Hydrogen evolution volume in a function of time during immersion in Ringer's solution at temperature of 37°C

B, Yb and Au addition together?

Materials & Design 213 (2022) 110327

New resorbable Ca-Mg-Zn-Yb-B-Au alloys: Structural and corrosion resistance characterization

Dawid Szyba^{a,*}, Anna Bajorek^b, Dorota Babilas^c, László Temleitner^d, Dariusz Łukowiec^a, Rafał Babilas^{a,*}

XRD results and DSC analysis

Fig. XRD patterns of $Ca_{32}Mg_{12}Zn_{38}Yb_{18-2x}B_xAu_x$ (x = 1, 2 at.%) alloys in a form of plate

Fig. DSC curves of $Ca_{32}Mg_{12}Zn_{38}Yb_{18-2x}B_xAu_x$ (x = 1, 2 at.%) alloys in a form of plate

Evolution of hydrogen in Ringer's solution

Fig. Hydrogen evolution volume over time for $Ca_{32}Mg_{12}Zn_{38}Yb_{18-2x}B_xAu_x$ (x=1, 2) plates in Ringer's solution at 37°C

Rys. E_{OCP} measurements for $Ca_{32}Mg_{12}Zn_{38}Yb_{18-2x}B_xAu_x$ (x=1, 2) plates compared with Mg and Zn Fig. Tafel plots for Ca₃₂Mg₁₂Zn₃₈Yb_{18-2x}B_xAu_x (x=1, 2) plates compared with Mg and Zn in Ringer's solution at 37°C

Analysis of corrosion products

Fig. XPS survey spectra for Ca₃₂Mg₁₂Zn₃₈Yb_{18-2x}B_xAu_x (x=1,2) plates after corrosion test in Ringer's solution at 37°C

Fig. XRD patterns of corrosion products of $Ca_{32}Mg_{12}Zn_{38}Yb_{18-2x}B_xAu_x$ (x=1, 2) plates after immersion in Ringer's solution at 37°C over 30 days

Surface morphology of the plates after immersion in Ringer's solution

Fig. Surface morphology of $Ca_{32}Mg_{12}Zn_{38}Yb_{18-2x}B_xAu_{xr} x=1$ (a, b), x=2 (c, d) plates after immersion in Ringer's solution at 37°C <u>over 7 days</u>

Fig. Surface morphology of $Ca_{32}Mg_{12}Zn_{38}Yb_{18-2x}B_xAu_{xr} x=1$ (a, b), x=2 (c, d) plates after immersion in Ringer's solution at 37°C <u>over 30 days</u>

The corrosion mechanism of Ca-Mg-Zn-Yb-B-Au alloys in Ringer's solution

CO32

CO.

- 1. Anodic dissolution
- 2. Hydroxide precipitation
- 3. Corrosion product layer formation
- 4. Corrosion propagation stage

Schematic presentation of a corrosion mechanism of the Ca-Mg-Zn-Yb-B-Au alloys in Ringer's solution

Wydział Mechaniczny Technologiczny Katedra Materiałów Inżynierskich i Biomedycznych

CI

