

Materials and Technologies for Hydrogen Energy – current Gdańsk Tech perspective

on behaf of

Aleksandra Mielewczyk-Gryń

Presentation plan

- A short introduction to research groups working on hydrogen-related topics at Gdańsk TECH
- $\circ~$ The major research interests of particular groups
- The current "hot topic" researched by Proton in Solids Research Group

Faculty of Electronics, telecommunication and informatics Laboratory of Functional Materials

Piotr Jasiński (PI) Sebastian Molin

Sylwia Pawłowska, Paweł Kalinowski, Karolina Sycewska, Ahsanul Kabir

Solid oxide cells: SOFC/SOECs

- Novel electrode materials: hydrogen and oxygen electrode;
- Ceramic processing;
- Testing of cells;

High-temperature corrosion and protective coatings:

- Dense alloys
- Porous alloys
- Electrochemistry
- Bio-interfaces;
- Electrocatalysis;
- Sensors;

High-temperature corrosion – protective coatings

Replacement of (MnCo)₃O₄

- it is regarded as a carcinogenic material by the World Health Organization
- processing at all stages requires expensive safety procedures and equipment;
- fluctuating price, during the last 5 years the price of cobalt more than doubled;
- it is not-sustainably mined
- We propose to search for new materials, composed of abundant and cheap elements (Fe, Mn, Cu, Ni, Mg etc.) with protective properties comparable to the Mn-Co spinel.

Alkaline electrolysis

Oxygen Evolution Reaction (OER) electrocatalysts

- Material Synthesis
- Structural Studies:
 - SEM
 - BET SSA
 - XRD
 - XPS
 - XAS*
 TEM
- Electrochemical Studies:
 - CV
 - EIS

Alkaline electrolysis

Electrode size upscaling – towards real life performance benchmarks

Platform for long-term performance evaluation Development towards larger scale systems

LMF works on several aspects of materials engineering:

Especially low-temperature

Ceramic deposition technologies:

- Dip-coating
- Spin-coating
- Spray-pyrolysis methods
- (soon) Electrospinning of nanofibers

New materials:

From powders to devices: SOCs, AECs;

Faculty of Applied Physics and Mathematics

Institute of Nanotechnology and Materials Engineering

Research in the insitutute:

- solid oxide fuel cells and solid oxide electrolyzers materials both electrolytes and electrodes;
- glasses luminescent and thermoelectric properties;
- carbon nanotubes and graphen based materials;
- thin films deposition and properties;
- intermetallic compounds and their low temperature properties superconductors;
- \circ Non destructive testing
- $\circ~$ solid state simulations and modeling MD, DFT, MC.
- o "wet" electrochemistry

Jakub Karczewski - PI Beata Bochentyn

collaboration P. Jasiński

Maria Gazda – PI Aleksandra Mielewczyk-Gryń Tadeusz Miruszewski Sebastian Wachowski Wojciech Skubida

DIR-SOFC fed with biogas

prof. Sea-Fue Wang

Araceli Fuerte, Ph.D.

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Ceria-based anode catalytic layers

In-situ measurements of electrical parameteres and outlet gases

Non-equilibrium chemical analysis of outlet gases

Influence of fuel impurities (H₂S, HCl, siloxanes)

DIR-SOFC fed with biogas

 $CH_4 + H_2O \leftrightarrow CO + 3H_2$ $CH_4 + CO_2 \leftrightarrow 2CO + 2H_2$

Nanometallic catalysts for SOEC/SOFC

1.8 wt.% Co Ε Ni grain Infiltration of nanometallic catalysts (Co, 8YSZ grain Cu, Fe, Mn, Ni) into Ni-YSZ matrix 400 Α - Reference 3.5-- 1.8 wt.% Co Reference 1 µm 100 n 5.4 wt % Co 1.8 wt.% Co (%) 3.0 350 MON 3.6 wt.% Co D 5.4 wt.% Co 3.6 wt.% Co tion 5.4 wt.% Co 2.0 300 @1.3 V Current density (mAcm⁻²) 0.26 nm (220) HO T 250 0.4 Equilibrium 500 525 625 650 550 575 600 675 200 Temperature (°C) 10 nm 150 -- Reference 3.5 - 1.8wt.% Co - 3.6 wt.% Co - 5.4wt.% Co (%) @1.3 V Co.O. Co.O. 100 rption (a.u.) (D) NiO Co.O NiCo_O NiCo,O, 2.0 NiCo.O 8YSZ 50 E Equilibrium 550 600 650 700 500 500 525 550 575 600 625 650 675 Temperature (°C) Temperature (°C) 526 528 530 532 534 530

Energy (eV)

Energy (eV)

Exsolution of metallic nanoparticles and formation of alloys

Support: (La,Sr,Ce)(ME,Ti)O_{3- δ}, (Ce,ME)O_{2- δ}, where ME=Co, Cu, Fe, Mn, Ni

Exsolution of mono- and multimetallic nanoparticles

Exsolution with topotactic ion exchange

Experiment vs. DFT calculation

- Project SONATA "New fuel electrodes for solid oxide electrolysis cells for syngas production", 2015/19/D/ST8/02783, NCN
- Project SONATA BIS "Tailoring multicomponent nanometric alloys formed on active support for designing the stable anodes of Solid Oxide Fuel Cells", 2021/42/E/ST5/00450, NCN

y Tecnológicas

Projects \rightarrow materials

14

- GoPHyMICO \rightarrow barium lanthanide cobaltites hydration
- FunKeyCat \rightarrow barium lanthanide cobaltites and ferrites for positrodes in PCECs
- Triple Conducting Oxides \rightarrow materials modification for three charge carriers conductivity
- High Entropy Oxides for protonic conductivity
- Positrode Optimization for Protonic Ceramic Electrochemical Cells Technology
- Entropy stabilized oxides transport properties
- Thin films for protonic conductivity
- Gas flow meters for industrial hydrogen

Methods

Synthesis methods:

- Solid state synthesis
- Molten salt synthesis
- Co-precipitation method
- o Mechanosynthesis

Experimental methods:

- Impedance spectrometry
- o 4 wire DC methods
- o Hebb-Wagner polarization method
- \circ ECR method
- Fuel cell and electrolyzer testing
- High temperature X-ray diffraction
- o Dilatometry
- Low temperature heat capacity measurements by PPMS system
- High temperature heat capacity measurements
- Water sorption studies
- o SEM/SPM
- Water uptake measurements → thermogravimetry
- X-ray absorption spectrometry
- Neutron diffraction
- o SR-XRD
- $\circ~$ TEM and TEM+SIMS

Motivation

Currently work on following parts of the Protonic Ceramic Electrochemical Cells:

- \circ Positode
- \circ Electrolyte

High entropy/multiconsitutent materials a new "buzz word" or real a "hot topic" in materials science

Materials

Materials based on proton conductors

Barium zirconate - one of the most recognized proton conducting oxides.

Lanthanum orthoniobate - one the most chemically stable proton conductors.

Introduction

Configurational entropy in oxides

19

The total disorder per volume of an oxide seems be lower than in a high-entropy alloy, as the anion sublattice is ordered (apart from point defects). However, the chemically uniform anion sublattice is very important - it hinders the tendency to the segregation of the cations with different electronegativities.

E. J. Pickering & N. G. Jones (2016) High-entropy alloys: a critical assessment of their founding principles and future prospects, International Materials Reviews, 61:3, 183-202,

Dippo, O.F.; Vecchio, K.S. Scr. Mater. 2021, 201, 113974.

Mechanical properties

Five-component alloy

OF TECHNOLOGY

Properties

Category	Composition/Alloy	Thermal conductivity (W/m K)
High Entropy Alloy	CoCrFeNi	12
	AlCoCrFeNi	11
	Al ₂ CoCrFeNi	16
Pure Element	Al	237
	Fe	80
	Ni	91
	Ti	22
	Cu	398
Conventional Alloy	7075 Al alloy	121
	Low Carbon Steel	52
	304 Stainless Steel	15
	Inconel 718	11
	Ti-6Al-4V	6

Thermal properties

Thermal properties of high-entropy materials:

High entropy alloys exhibit **lower thermal conductivity** than those of most pure metals, but are similar to those of heavily alloyed conventional metals such as high-alloy steel or Ni-based superalloys.

High-entropy oxides have even lower thermal conductivity, e.g. $Y_{0.2}Nd_{0.2}Sm_{0.2}Eu_{0.2}Er_{0.2}AlO_3$ at room temperature: 4 W/mK

Ming-Hung Tsai, Entropy 2013, 15, 5338-5345; doi:10.3390/e15125338 Z. Zhao et al. Journal of Materials Science & Technology, Volume 47, 15 June 2020, Pages 45-51

Introduction

Electrical properties

۲

Fig. 5 Ionic conductivities for Li and Na doped HEOx samples.

Electrical properties of high-entropy materials:

- High entropy alloys exhibit high electrical resistivity with a low temperature coefficient of resistivity → the contribution to the resistivity of electron scattering on lattice defects is stronger than the electron-phonon scattering
- The ionic conductivity observed in some lithium substituted oxides was very high, reaching 1 mScm⁻¹ at room temperature

K. Jin et al. , Scientific Reports volume 6, Article number: 20159 (2016) D. Bérardan, S. Franger, A. K. Meena and N. Dragoe, J. Mater. Chem. A, 2016, 4, 9536–9541

High-entropy proton/mixed conductors?

The presence of at least five cationic constituents, related to that disorder and lattice distortions may be expected to influence both concentration of particular charge carriers and their mobility.

$$\begin{aligned} v_0^{\bullet\bullet} + H_2 O_{(g)} + O_0^x &= 20H_0^{\bullet} \\ H_2 O_{(g)} + 2O_0^x + 2h^{\bullet} &= 20H_0^{\bullet} + \frac{1}{2}O_{2(g)} \\ O_0^x &= v_0^{\bullet\bullet} + \frac{1}{2}O_{2(g)} + 2e' \end{aligned}$$

$$\mu(T) \sim \exp \frac{\Delta S_{migr}}{k} \exp \left(-\frac{\Delta H_{migr}}{kT}\right)$$

Concentration of ionic and/or electronic charge carriers: aliovalent constituents/intrinsic defects/transition metals presence /hydration/ hydrogenation/reduction/oxidation;

Mobility of ionic and/or electronic charge carriers: disorder may influence migration enthalpy, migration entropy, defect clustering. Migration enthalpy and entropy may be coupled.

Motivation

Initial Studies

Gazda et al. ACS Materials Lett. 2020, 2, 10, 1315–1321

DERS

000

O

Samples matrix

Periodic Table of the Elements

https://www.sciencenewsforstudents.org/article/scientists-say-periodic-table

What's In A Name?

Multiconstutient
High entropy
Entropy stabilized

Studies – water uptake

Hydration thermodynamics

 $\sim \Delta H_{hydr}$ =-40-60kJ/mol $\sim \Delta S_{hydr}$ =-140 J/mol

Enthalpy of formation

Mielewczyk-Gryń et al. Phys. Chem. Chem. Phys., 2023

GDAŃSK UNIVERSITY

Chemical diffusion of water

 $BaZr_{1/8}Hf_{1/8}Sn_{1/8}Ti_{1/8}Y_{1/8}In_{1/8}Sm_{1/8}Yb_{1/8}O_{3-\delta}$

 $H_2O + V_O^{\bullet\bullet} + O_O^X \leftrightarrow 2OH^{\bullet}$

Chemical diffusion of water

Meng et al. J Mater Sci (2019) 54:9291–9312

Miruszewski et al. (2022) in preparation

OF TECHNOLOGY

Conclusion

Thank you for your kind attention.

Contact details: Aleksandra Mielewczyk-Gryń Nanotechnology Centre A Gdańsk University of Technology Narutowicza 11/12 80-233 Gdańsk, Poland Phone no. +48 58 348 66 19 Email: alegryn@pg.gda.pl

